NEC Microcomputers, Inc.

NEC μPD4164-1 μPD4164-2 μ PD4164-3

65,536 x 1 BIT DYNAMIC RANDOM ACCESS MEMORY

DESCRIPTION

The NEC μ PD4164 is a 65,536 words by 1 bit Dynamic N-Channel MOS RAM designed to operate from a single +5V power supply. The negative-voltage substrate bias is internally generated — its operation is both automatic and transparent.

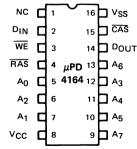
The μ PD4164 utilizes a double-poly-layer N-channel silicon gate process which provides high storage cell density, high performance and high reliability.

The µPD4164 uses a single transistor dynamic storage cell and advanced dynamic circuitry throughout, including the 512 sense amplifiers, which assures that power dissipation is minimized. Refresh characteristics have been chosen to maximize yield (low cost to user) while maintaining compatibility between Dynamic RAM generations.

The μ PD4164 three-state output is controlled by \overline{CAS} , independent of \overline{RAS} . After a valid read or read-modify-write cycle, data is held on the output by holding \overline{CAS} low. The data out pin is returned to the high impedance state by returning \overline{CAS} to a high state. The μ PD4164 hidden refresh feature allows \overline{CAS} to be held low to maintain output data while \overline{RAS} is used to execute \overline{RAS} only refresh cycles.

Refreshing is accomplished by performing \overline{RAS} only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128 address combinations of A0 through A6 during a 2 ms period.

Multiplexed address inputs permit the μ PD4164 to be packaged in the standard 16 pin dual-in-line package. The 16 pin package provides the highest system bit densities and is compatible with widely available automated handling equipment.


FEATURES

- High Memory Density
- Multiplexed Address Inputs
- Single +5V Supply
- On Chip Substrate Bias Generator
- Access Time: μPD4164-1 250 ns

 μ PD4164-2 - 200 ns μ PD4164-3 - 150 ns

- Read, Write Cycle Time: μ PD4164-1 410 ns μ PD4164-2 335 ns
 - μ PD4164-2 335 ns μ PD4164-3 270 ns
- Low Power Dissipation: 250 mW (Active); 28 mW (Standby)
- Non-Latched Output is Three-State, TTL Compatible
- Read, Write, Read-Write; Read-Modify-Write, RAS Only Refresh, and Page Mode Capability
- All Inputs TTL Compatible, and Low Input Capacitance
- 128 Refresh Cycles (An-An Pins for Refresh Address)
- CAS Controlled Output Allows Hidden Refresh
- Available in Both Ceramic and Plastic 16 Pin Packages

PIN CONFIGURATION

	PIN NAMES
A ₀ -A ₇	Address Inputs
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
DIN	. Data Input
DOUT	Data Output
vcc	Power Supply (+5V)
V _{SS}	Ground
NC	No Connection

μPD4164

Operating Temperature	ABSOLUTE MAXIMUM
Storage Temperature (Ceramic Package)55°C to +150°C	RATINGS*
(Plastic Package)55°C to +125°C	
Supply Voltages On Any Pin Except VCC1 to +7 Volts ①	
Supply Voltage V _{CC}	
Short Circuit Output Current	
Power Dissipation	
Note: ① Relative to Vss	

Note: (1) Relative to VSS

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*Ta = 25°C

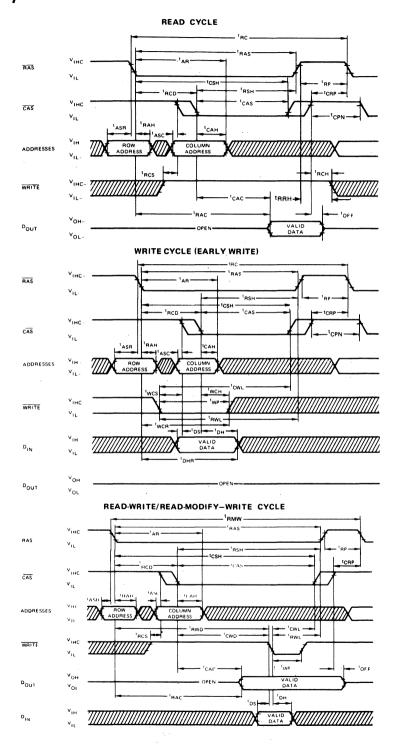
 $T_a = 0^\circ \text{ to } 70^\circ \text{C}$ (1); $V_{CC} = +5V \pm 10\%$; $V_{SS} = 0V$

				LIMITS			TEST
PARAMETER	S١	MBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Supply Voltage		Vcc	4.5	5.0	5.5	>	
		V _{SS}	0	0	0	V	
High Level Input Voltage. (RAS, CAS, WE)	,	VIHC	2.4		5.5	٧	All Voltages Referenced
High Level Input Voltage, All Inputs Except RAS, CAS, WE		VIH	2.4		5.5	٧	to V _{SS}
Low Level Input Voltage, All Inputs		VIL	-2.0		0.8	>	
Operating Current Average Power Supply		μPD4164-1			45		,
Operating Current	Icc1	μPD4164-2			50	mA	2
RAS, CAS Cycling; tRC = tRC (Min.)		μPD4164-3			60		
Standby Current Power Supply Standby Current (RAS = VIHC, DOUT = Hi-Impedance)		I _{CC2}			5.0	mA	
Refresh Current Average Power Supply		μPD4164-1			35		
Current, Refresh Mode;	1cc3	μPD4164-2			40	mA	2
RAS Cycling, CAS = V _{IHC} , t _{RC} = t _{RC} (Min.)		μPD4164-3			45		
Page Mode Current Average Power Supply		μPD4164-1			35		
Current, Page Mode Operation	ICC4	μPD4164-2			40	mA	2
RAS = V _{IL} ; CAS Cycling tpC = tpC (Min.)		μPD4164-3			45		
Input Leakage Current Any Input V _{IN} = 0 to +5.5 Volts, All Other Pins Not Under Test = 0V		li(L)	-10		10	μΑ	
Output Leakage Current DOUT is Disabled, VOUT = 0 to +5.5 Volts		¹ O(L)	-10		10	μΑ	
Output Levels High Level Output		Vон	2.4		Vcc	v	
Voltage (IOUT = 5 mA) Low Level Output Voltage (IOUT = 4.2 mA)		VoL	0		0.4	٧	

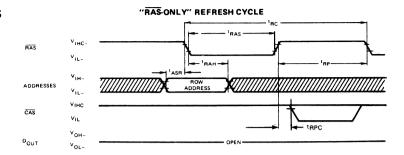
Notes: ① T_a is specified here for operation at frequencies to t_{RC} ≥ t_{RC} (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met.
② I_{CC1}, I_{CC3} and I_{CC4} depend on output loading and cycle rates. Specified rates are

obtained with the output open.

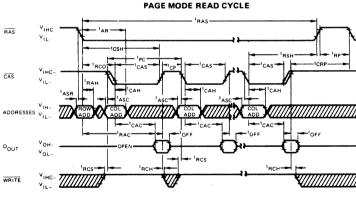
DC CHARACTERISTICS

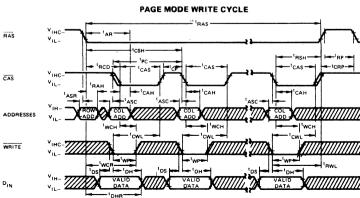

AC CHARACTERISTICS

 $T_a = 0^{\circ} \text{ to } +70^{\circ} \text{ C} \bigcirc; V_{CC} = +5V \pm 10\%; V_{SS} = 0V \bigcirc \bigcirc$


		LIMITS								
	1	μPD	4164-1	μPD4	164-2	μPD	4164-3]	TEST	
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	CONDITIONS	
Random Read or Write Cycle Time	tRC	410		335		270		ns	⑤	
Read Write Cycle Time	tRWC	465		335	1	270		ns	6	
Page Mode Cycle Time	tPC	275		225		170		ns		
Access Time from RAS	tRAC		250		200		150	ns	6 8	
Access Time from CAS	tCAC		165		135		100	ns	⑦ ®	
Output Buffer Turn-Off Delay	tOFF	0	60	0	50	0.	40	ns	9	
Transition Time (Rise and Fall)	tΤ	3	50	3	50	3	50	ns	4	
RAS Precharge Time	tRP	150		120		100		ns		
RAS Pulse Width	tRAS	250	10,000	200	10,000	150	10,000	ns		
RAS Hold Time	tRSH	165		135		100		ns		
CAS Pulse Width	tCAS	165	10,000	135	10,000	100	10,000	ns		
CAS Hold Time	tCSH	250		200		150		ns		
RAS to CAS Delay Time	tRCD	35	85	30	65	25	50	ns	0	
CAS to RAS Precharge Time	tCRP	0		0		0	ļ	ns		
CAS Precharge Time	tCPN	35		30		25		ns		
CAS Precharge Time (For Page Mode Cycle Only)	tCP	100		80		60		ns		
RAS Precharge CAS Hold Time	TRPC	0		0		0		ns		
Row Address Set-Up Time	†ASR	0		0		0		ns		
Row Address Hold Time	tRAH	25		20	 	15	 	ns		
Column Address Set-Up Time	tASC	0		0		0		ns		
Column Address Hold Time	†CAH	75		55		45		ns		
Column Address Hold Time Referenced to RAS	^t AR	160		120		95		ns		
Read Command Set-Up Time	tRCS	0		0		0		ns		
Read Command Hold Time Referenced to RAS	terh	30		25		20		ns	G)	
Read Command Hold Time	tRCH-	0		0		0		ns	(3	
Write Command Hold Time	tWCH	75		55		45		ns		
Write Command Hold Time Referenced to RAS	·WCR	160		120		95		ns		
Write Command Pulse Width	twp	75		55		45		ns		
Write Command to RAS Lead Time	[†] RWL	100		55		45		ns		
Write Command to CAS Lead Time	tCWL	100		55		45		ns		
Data-In Set-Up Time	tps	0		0		0		ns	0	
Data-In Hold Time	†DH	75		55		45		ns	0	
Data-In Hold Time Referenced to RAS	^t DHR	160		120		95		ns		
Refresh Period	†REF		2		2		2	ms		
WRITE Command Set-Up Time	twcs	-20		-20		-20		ns	Ø	
CAS to WRITE Delay	tCWD	115		80		60		ns	0	
RAS to WRITE Delay	tRWD	200		145	T	110	I	ns	0	

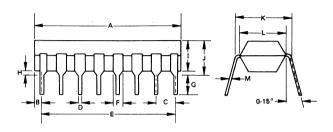
- Notes: ① T₈ is specified here for operation at frequencies to t_{RC} > t_{RC} (min). Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met.
 - ② An initial pause of 100 μs is required after power-up followed by any 8 \overline{RAS} cycles before proper device operation is
 - 3 AC measurements assume t_T = 5 ns.
 - V_{IHC} (min) or V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL}.
 - ⑤ The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle times at which proper operation over the full temperature range (0° C < T_a < 70° C) is assured.</p>
 - Assumes that tRCS < tRCD (max). If tRCS is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the values shown.
 </p>
 - Assumes that tRCD > tRCD (max).
 - (8) Measured with a load equivalent to 2 TTL loads and 100 pF.
 - toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
 - Operation within the tRCD (max) limit ensures that tRAC (max) can be met, tRCD (max) is specified as a reference point only, if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
 These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.


 - ② Either tRRH or tRCH must be satisfied for a read cycle.



TIMING WAVEFORMS (CONT.)

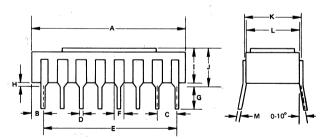
HIDDEN REFRESH CYCLE MEMORY CYCLE - IPP - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAAA - IAAA - IAAA - IAAA - IAAA - IAAAA - IAAAA - IAAAA - IAAA - IAAAA - IA



 $T_a = 0^{\circ} \text{ to } +70^{\circ}\text{C}; V_{CC} = +5\text{V} \pm 10\%; V_{SS} = 0\text{V}$

PARAMETER	SYMBOL		LIMITS	3	UNIT	TEST
PANAMETEN	STMBUL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance (A ₀ -A ₇), D _{IN}	C _{I1}		5	6	рF	
Input Capacitance RAS, CAS, WRITE	C ₁₂	ĸ.	; .	10	pF	
Output Capacitance (DOUT)	C ₀			7	pF	

CAPACITANCE


PACKAGE OUTLINES $\mu PD4164C$

Plastic

ITEM	MILLIMETERS	INCHES
Α	19.4 MAX.	0.76 MAX.
В	0.81	0.03
С	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	2.54 MIN.	0.10 MIN.
н	0.5 MIN.	0.02 MIN.
ı	4.05 MAX.	0.16 MAX.
J	4.55 MAX.	0.18 MAX.
K	7.62	0.30
L.	6.4	0.25
м	0.25 +0.10 -0.05	0.01

μPD4164D

Ceramic

ITEM	MILLIMETERS	INCHES
Α	20.5 MAX.	0.81 MAX
В	1.36	0.05
С	2.54	0.10
D	0.5	0.02
E	17.78	0.70
F	1.3	0.051
G	3.5 MIN.	0.14 MIN.
н	0.5 MIN.	0.02 MIN.
1	4.6 MAX.	0.18 MAX
J	5.1 MAX.	. 0.20 MAX
K	7.6	0.30
L	7.3	0.29
м	0.27	0.01